
Destiny Vault Raider
Allyn Hunt

Blog: AllynH.com

Twitter: @Allyn_H_

Web application: DestinyVaultRaider.com

Introduction:

New father.

Engineer.

No prior experience with Python or Web Development.

Started Destiny Vault Raider as a hobby project and learning experience.

Blogging my experiences with Python and Destiny Vault Raider.

Originally I wanted to keep project scope to pure Python, HTML and CSS.

Destiny the game:

Online first person shooter video game.

Developed by Bungie (Halo series).

Destiny 1 (September 2014).

Destiny 2 (September 2017).

https://twitter.com/destinytrack/status/919751505460293632

http://destinytracker.com/ (18/Oct/2017)

Player vs Player:

Casual and Competitive.

Periodic events (Iron Banner).

Player vs Enemy:

Strikes.

Raids.

Destiny API:

Statistics:

Number of kills, deaths, assists, precision kills.

Game mode, time played, game score.

Players met.

Activity / Milestone tracking:

Track completion level of quests.

Track steps on next quest.

Name: Savathun's Song

Des.: Delve deep into the Hive-infested Arcology in

search of missing fireteams.

Mode: Strike

Kills: 64

Deaths: 5

Time: 22m 11s

Destiny API:

Interact with the in-game world:

View items.

Transfer items between characters.

Equip items on character.

View vendor / collectable data:

Weapons and armour for sale.

View perks, modifications on

weapons.

Inventory management solves a real

problem:

About to raid and forget your favourite gun?

Change character Fly to tower
Deposit weapon

into vault

Change character Fly to tower
Collect weapon

from vault
Fly to activity

Destiny Manifest:

SQLite based lookup table.

Contains definitions of all of the items in the Destiny world.

Names, description, icon, activity name, enemy names, faction details, stats etc.

Download from (blog post with more details):

manifest_url = 'https://www.bungie.net/Platform/Destiny2/Manifest/'

res = requests.get(manifest_url, headers=HEADERS)

App Structure:

Built in Flask with Python 2.7.13.

App structure is taken from Miguel Grinbergs blog and book.

Uses Flask-Login for user session management.

Flask-Script Manager to manage CLI in production and development

environments.

SQLAlchemy used to manage user databases.

PostgreSQL database used in deployed environment (Heroku).

Flask Blueprint used to separate main app views from the API.

Jinja2 HTML template engine for Python.

App features:
Log in / Log out
Change account
(PS4, Xbox, PC)

Character select
Character and account

information

Link to related blog
posts

Inventory management:
Equip item

Send to vault

App features:

Select character

Click item to send
to that character

User is redirected
to that character

App Features:

Supports Destiny 2 (Released Sept 6th).

Custom OAuth 2.0 authentication flow.

Handles multiple accounts.

Other functions:

View vendor data (Bungie have not yet enabled for D2).

View clan data.

Compare active missions between clan members (Bungie have not yet enabled for D2).

API and debug:

API to sync Manifest version with Bungie servers (Disabled due to Heroku charges).

View list of usernames, sorted by last seen.

Error reports emailed directly to my Gmail.

Messages sent to private Slack account when specific errors are hit.

Presentation Scope:

What I’m planning on showing:

Viewing character vault.

How I created the character vault view.

Transferring an item.

For information on the following - Check out my blog:

Creating the Flask setup.

API quick start.

Downloading / formatting the Manifest.

Background jobs with Celery and Redis.

API Registration / storing auth token in

Session:

Create an account and register as a developer:

https://www.bungie.net/en/User/API

This will give you your unique X-API-Key.

We need to send this API key in the HTTP header of the request.

Authorised requests will need you to authorise the user via the OAuth flow.

Python Requests library used to store Session data:

oauth_session = requests.Session()

oauth_session.headers["X-API-Key"] = "abcd12345"

oauth_session.headers["Authorization"] = 'Bearer ' + str(oauth_token)

35,000 lines of text

54,000 lines of text

2,600 lines of text

Sending a HTTP GET request to view vault:

Sending the GET request:
D2_BASE_URL = "https://www.bungie.net/Platform/Destiny2/"

req_string = D2_BASE_URL + str(membershipType) + "/Profile/" + str(membershipId) + "?components=100,102"

res = session.get(req_string)

Which allows us to do some cool stuff:
print res.url

print res.status_code

print res.headers

print res.text

print res.json()

We can store session data in the headers and cookies too:

print session.headers

print session.cookies

Send a request to Bungie.net to get

the users Vault details:

Parse the Vault response and return

only the required data:

Populating the vault route with our

data:

Categorising the data:

Dictionary response:

weaponList = {

'itemName': u'MIDA Multi-Tool',

'itemTypeName': u'Scout Rifle',

'bucket': u'Kinetic Weapons',

'tierTypeName': u'Exotic',

'itemReferenceHash': u'6917529035440581369',

'itemLightLevel ': '',

'stackSize': 1,

'equipped': False,

'icon':

u'https://www.bungie.net/common/destiny2_content/icons/

077e9577fb39cb521b49048db236e39d.jpg',

'itemHash': 1331482397,

'quantity': 1

}

Item categories:

category = {

1 : 'Kinetic Weapons',

2 : 'Energy Weapons',

3 : 'Power Weapons',

4 : 'Ghost',

5 : 'Helmet',

6 : 'Gauntlets',

7 : 'Chest Armor',

8 : 'Leg Armor',

9 : 'Class Armor',

:

:

}

Populating categories:

Vault.html:
<div class="inventory-container">

<!-- Loop through all item categories: -->

{% for item in category -%}

<!-- Loop through list of dictionaries: -->

{% for dict_item in weaponList -%}

<!-- if dict is in this category, create the HTML to display item: -->

{% if category[item] in dict_item['bucket'] -%}

{% include 'itemBlock.html' -%}

{% endif -%}

{% endfor -%}

{% endfor -%}

</div>

Populating the HTML:

itemBlock.html:

<div class="thumbnail">

<p>{{ dict_item['itemName'] }}: {{ dict_item['itemLightLevel'] }}</p>

<p>{{ dict_item['tierTypeName'] }} {{ dict_item['itemTypeName'] }}</p>

</div>

Completed Vault view:

The transferItem endpoint:

Create the POST data:

transfer_url = "https://www.bungie.net/Platform/Destiny2/Actions/Items/TransferItem/"

payload = {

'itemReferenceHash': Unique reference number,

'stackSize': '1‘,

'transferToVault': True / False,

'itemId': Generic item hash,

'characterId': charId,

'membershipType': 1 = Xbox, 2 = Playstation, 4 = PC

}

Send the POST request:

res = session.post(transfer_url, json=payload)

Transferring an item:

HTML:

The transferItem route:

@main.route('/transferItem/<charId>/<itemInstanceId>/<itemReferenceHash>/<to_vault>/<view>/')

@login_required

def transferItem(charId, itemInstanceId, itemReferenceHash, to_vault, view):

user = g.user

payload = {

'itemReferenceHash': itemReferenceHash,

'stackSize': '1',

'transferToVault': to_vault,

'itemId': itemInstanceId,

'characterId': charId,

'membershipType': g.user.membershipType

}

transferItem_res = D2transferItem(payload, oauth_session)

return redirect(url_for(view))

Completed character view:

Video:

 See here for video: https://vimeo.com/240543497

 Currently in vault view.

 Transferring Helmet to character,

 Equip it, helmet changes.

 Transferring Mida-Multi tool,

 Equip it, gun on back changes.

 Transfer a sword for PvP.

 Equip it, No animation as Mida is currently equipped.

https://vimeo.com/240543497

Deployment issues / challenges:

Multiple accounts / accounts activated only on Beta version of the game.

Very difficult to simulate correctly in development.

Email error reports and Slack messaging service really helped here.

Bungie now return account information in numerical order.

Automating deployment of new Manifest files still tricky.

Hobby plan + Celery worker + Redis database >€60/month.

No easy way to push a JSON file to a Heroku repo.

By the time you spot an issue, users are very unlikely to return.

Get it right first time!

Conclusions:

Core app works well – Flask is great:

Needs some unique features in order to progress from tutorial into full product.

Lots of redundant API calls and refreshing of data:

Can I cache data between item transfers?

Can updating view be done on the front-end with AJAX?

Lots of front-end work needed to build features:

Hover over an item to display screenshot, stats, additional transfer options.

Create a loadout builder on the front-end.

Possibly move hosting service:

Heroku is very easy to get started with but very expensive when adding features.

Questions?:

Get in touch:

Allyn Hunt

Blog: AllynH.com

Twitter: @Allyn_H_

Web application: DestinyVaultRaider.com

GitHub: https://github.com/AllynH

